Heat tolerance and Symbiodiniaceae profiles of acroporids in a Philippine Reef

John Bennedick Quijano*, Jake Ivan P. Baquiran, and Cecilia Conaco

Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.

Abstract

Warming of the oceans is decimating coral reefs worldwide. Yet, it has been observed that a proportion of coral populations from the same general reef area, experiencing a similar thermal regime, are able to tolerate heat stress and endure. To understand the mechanisms underlying coral thermal tolerance, we subjected fragments taken from 30 colonies of *Acropora digitifera*, *A. millepora* and *A. tenuis* to 33°C (high temperature) versus 29°C (control) for about a week (~2 DHW). Our results revealed inter-individual differences in heat tolerance in all three coral species, with 70% of *A. digitifera*, 50% of *A. millepora*, and 30% of *A. tenuis* colonies showing high tolerance to elevated temperature (i.e., no bleaching). However, analysis of associated microalgal symbionts in these corals using ITS2 sequencing did not demonstrate a clear correlation between differences in heat tolerance and Symbiodiniaceae composition, suggesting that host-specific factors should also be examined.

*Email: jbquijano@up.edu.ph